top of page
Search

Los científicos descubren una joya en el corazón de la física cuántica

Writer: Alice MeravigliaAlice Meraviglia

Updated: Jan 23, 2022

Por Natalie Wolchover

Los físicos han descubierto un objeto geométrico con forma de joya que desafía la noción de que el espacio, el tiempo y las partículas son constituyentes fundamentales de la naturaleza.


Los físicos han informado esta semana del descubrimiento de un objeto geométrico similar a una joya que simplifica enormemente los cálculos de las interacciones entre partículas y pone en entredicho la idea de que el espacio y el tiempo son componentes fundamentales de la realidad.

Representación artística del amplituhedro, un objeto matemático recién descubierto que se asemeja a una joya polifacética en dimensiones superiores.

"Esto es completamente nuevo y mucho más simple que todo lo que se ha hecho antes", dijo Andrew Hodges, un físico matemático de la Universidad de Oxford que ha estado siguiendo el trabajo.


La revelación de que las interacciones de las partículas, los acontecimientos más básicos de la naturaleza, pueden ser consecuencias de la geometría supone un avance significativo en el esfuerzo de décadas por reformular la teoría cuántica de campos, el cuerpo de leyes que describe las partículas elementales y sus interacciones. Las interacciones que antes se calculaban con fórmulas matemáticas de miles de términos, ahora pueden describirse calculando el volumen del correspondiente "amplituhedro" en forma de joya, que arroja una expresión equivalente de un solo término.


"El grado de eficacia es alucinante", afirma Jacob Bourjaily, físico teórico de la Universidad de Harvard y autor del primero de los dos artículos que detallan la nueva idea. "Se pueden hacer fácilmente, sobre el papel, cálculos que antes eran inviables incluso con un ordenador".


La nueva versión geométrica de la teoría cuántica de campos también podría facilitar la búsqueda de una teoría de la gravedad cuántica que conectara sin problemas las imágenes a gran y pequeña escala del universo. Hasta ahora, los intentos de incorporar la gravedad a las leyes de la física a escala cuántica se han topado con infinitos sinsentidos y profundas paradojas. El amplituhedro, o un objeto geométrico similar, podría ayudar eliminando dos principios profundamente arraigados en la física: la localidad y la unitariedad.


"Ambos están muy arraigados en la forma habitual de pensar en las cosas", afirma Nima Arkani-Hamed, profesor de física del Instituto de Estudios Avanzados de Princeton (Nueva Jersey) y autor principal de los dos nuevos trabajos, que se publicaron en el sitio de preimpresión de física arXiv.org, uno el pasado diciembre y otro la semana pasada. "Ambos son sospechosos".


Nima Arkani-Hamed, profesor del Instituto de Estudios Avanzados, y su antiguo alumno y coautor Jaroslav Trnka, que terminó su doctorado en la Universidad de Princeton en julio y ahora es investigador posdoctoral en el Instituto Tecnológico de California.

La localidad es la noción de que las partículas sólo pueden interactuar desde posiciones contiguas en el espacio y el tiempo. Y la unitariedad sostiene que las probabilidades de todos los resultados posibles de una interacción mecánica cuántica deben sumar uno. Ambos conceptos son los pilares centrales de la teoría cuántica de campos en su forma original, pero en determinadas situaciones en las que interviene la gravedad, ambos se rompen, lo que sugiere que ninguno de ellos es un aspecto fundamental de la naturaleza.


En consonancia con esta idea, el nuevo enfoque geométrico de las interacciones entre partículas elimina la localidad y la unitariedad de sus supuestos de partida. El amplituhedro no se construye a partir del espacio-tiempo y las probabilidades; estas propiedades surgen simplemente como consecuencias de la geometría de la joya. La imagen habitual del espacio y el tiempo, y de las partículas que se mueven en ellos, es una construcción.


"Es una formulación mejor que te hace pensar en todo de una manera completamente diferente", afirma David Skinner, físico teórico de la Universidad de Cambridge.


El amplituhedro en sí no describe la gravedad. Pero Arkani-Hamed y sus colaboradores creen que podría haber un objeto geométrico relacionado que sí lo haga. Sus propiedades aclararían por qué las partículas parecen existir, y por qué parecen moverse en tres dimensiones del espacio y cambiar con el tiempo.


Como "sabemos que, en última instancia, tenemos que encontrar una teoría que no tenga" unicidad y localidad, dijo Bourjaily, "es un punto de partida para describir, en última instancia, una teoría cuántica de la gravedad."


Maquinaria torpe


El amplituhedro parece una joya intrincada y polifacética en dimensiones superiores. En su volumen están codificadas las características más básicas de la realidad que pueden calcularse, las "amplitudes de dispersión", que representan la probabilidad de que un determinado conjunto de partículas se convierta en otras determinadas al colisionar. Estas cifras son las que los físicos de partículas calculan y comprueban con gran precisión en aceleradores de partículas como el Gran Colisionador de Hadrones de Suiza.


El emblemático físico del siglo XX Richard Feynman inventó un método para calcular las probabilidades de las interacciones de las partículas mediante representaciones de todas las formas en que podía producirse una interacción. Los ejemplos de "diagramas de Feynman" se incluyeron en un sello postal de 2005 en honor a Feynman. Servicio postal de EE.UU.

El método de cálculo de las amplitudes de dispersión, de 60 años de antigüedad y que supuso una gran innovación en su momento, fue impulsado por el físico Richard Feynman, ganador del Premio Nobel. Hizo dibujos de todas las formas en que podía ocurrir un proceso de dispersión y luego sumó las probabilidades de los diferentes dibujos. Los diagramas de Feynman más sencillos parecen árboles: Las partículas implicadas en una colisión se juntan como raíces, y las partículas resultantes salen disparadas como ramas. Los diagramas más complicados tienen bucles, donde las partículas que colisionan se convierten en "partículas virtuales" inobservables que interactúan entre sí antes de ramificarse como productos finales reales. Hay diagramas con un bucle, dos bucles, tres bucles y así sucesivamente: iteraciones cada vez más barrocas del proceso de dispersión que contribuyen progresivamente a su amplitud total. Las partículas virtuales nunca se observan en la naturaleza, pero se consideraban necesarias desde el punto de vista matemático para la unitariedad, es decir, el requisito de que las probabilidades sumen uno.


"El número de diagramas de Feynman es tan explosivo que incluso los cálculos de procesos realmente sencillos no se hicieron hasta la era de los ordenadores", afirma Bourjaily. Un acontecimiento aparentemente sencillo, como la colisión de dos partículas subatómicas llamadas gluones para producir cuatro gluones menos energéticos (lo que ocurre miles de millones de veces por segundo durante las colisiones en el Gran Colisionador de Hadrones), implica 220 diagramas, que en conjunto contribuyen con miles de términos al cálculo de la amplitud de la dispersión.


En 1986, se hizo evidente que el instrumento de Feynman era una máquina de Rube Goldberg.


Para preparar la construcción del Supercolisionador Superconductor en Texas (un proyecto que posteriormente se canceló), los teóricos querían calcular las amplitudes de dispersión de las interacciones de partículas conocidas para establecer un fondo sobre el que destacaran las señales interesantes o exóticas. Pero incluso los procesos de 2 gluones a 4 gluones eran tan complejos, había escrito un grupo de físicos dos años antes, "que no podrán ser evaluados en un futuro previsible".


Stephen Parke y Tommy Taylor, teóricos del Laboratorio Nacional de Aceleradores Fermi, en Illinois, se tomaron esa afirmación como un reto. Utilizando algunos trucos matemáticos, consiguieron simplificar el cálculo de la amplitud de 2 gluones a 4 gluones de varios miles de millones de términos a una fórmula de 9 páginas, que un superordenador de los años 80 podía manejar. A continuación, basándose en un patrón que observaron en las amplitudes de dispersión de otras interacciones de gluones, Parke y Taylor adivinaron una simple expresión de un término para la amplitud. El ordenador verificó que era equivalente a la fórmula de 9 páginas. En otras palabras, la maquinaria tradicional de la teoría cuántica de campos, que implica cientos de diagramas de Feynman con miles de términos matemáticos, estaba ocultando algo mucho más sencillo. Como dijo Bourjaily: "¿Por qué sumas millones de cosas cuando la respuesta es una sola función?".


"En ese momento sabíamos que teníamos un resultado importante", dijo Parke. "Lo supimos al instante. Pero, ¿qué hacer con él?"


El Amplituhedro


El mensaje del resultado de un solo término de Parke y Taylor tardó décadas en interpretarse. "Esa pequeña y hermosa función de un solo término fue como un faro para los siguientes 30 años", dijo Bourjaily. "Realmente inició esta revolución".


Diagramas de twistores que representan una interacción entre seis gluones, en los casos en que dos (izquierda) y cuatro (derecha) de las partículas tienen helicidad negativa, una propiedad similar al espín. Los diagramas pueden utilizarse para derivar una fórmula sencilla para la amplitud de dispersión de 6 gluones. Arkani-Hamed et al.

A mediados de la década de 2000, surgieron más patrones en las amplitudes de dispersión de las interacciones de partículas, que insinuaban repetidamente una estructura matemática subyacente y coherente detrás de la teoría cuántica de campos. Lo más importante fue un conjunto de fórmulas denominadas relaciones de recursión BCFW, llamadas así por Ruth Britto, Freddy Cachazo, Bo Feng y Edward Witten. En lugar de describir los procesos de dispersión en términos de variables familiares como la posición y el tiempo y representarlos en miles de diagramas de Feynman, las relaciones BCFW se expresan mejor en términos de variables extrañas llamadas "twistores", y las interacciones de las partículas pueden capturarse en un puñado de diagramas de twistores asociados. Las relaciones se adoptaron rápidamente como herramientas para calcular las amplitudes de dispersión relevantes para los experimentos, como las colisiones en el Gran Colisionador de Hadrones. Sin embargo, su simplicidad resultaba misteriosa.


"Los términos de estas relaciones BCFW procedían de un mundo diferente y queríamos entender cuál era ese mundo", explica Arkani-Hamed. "Eso es lo que me atrajo al tema hace cinco años".


Con la ayuda de destacados matemáticos como Pierre Deligne, Arkani-Hamed y sus colaboradores descubrieron que las relaciones de recursión y los diagramas de torsión asociados correspondían a un objeto geométrico bien conocido. De hecho, como se detalla en un artículo publicado en arXiv.org en diciembre por Arkani-Hamed, Bourjaily, Cachazo, Alexander Goncharov, Alexander Postnikov y Jaroslav Trnka, los diagramas de torsión daban instrucciones para calcular el volumen de trozos de este objeto, llamado grassmanniano positivo.


Llamado así por Hermann Grassmann, un lingüista y matemático alemán del siglo XIX que estudió sus propiedades, "el grassmanniano positivo es el primo un poco más adulto del interior de un triángulo", explicó Arkani-Hamed. Al igual que el interior de un triángulo es una región de un espacio bidimensional delimitada por líneas que se cruzan, el caso más sencillo del grassmanniano positivo es una región de un espacio de N dimensiones delimitada por planos que se cruzan. (N es el número de partículas que intervienen en un proceso de dispersión).


Era una representación geométrica de los datos reales de las partículas, como la probabilidad de que dos gluones que colisionan se conviertan en cuatro gluones. Pero aún faltaba algo.


Los físicos esperaban que la amplitud de un proceso de dispersión surgiera pura e inevitablemente de la geometría, pero la localidad y la unitariedad dictaban qué piezas del grassmanniano positivo había que sumar para obtenerla. Se preguntaron si la amplitud era "la respuesta a alguna pregunta matemática concreta", dijo Trnka, investigador posdoctoral del Instituto Tecnológico de California. "Y lo es", dijo.



Como se informó el 6 de diciembre, Arkani-Hamed y Trnka descubrieron que la amplitud de la dispersión equivale al volumen de un nuevo objeto matemático: el amplituhedro. Los detalles de un proceso de dispersión concreto dictan la dimensionalidad y las facetas del amplituhedro correspondiente. Las piezas del grassmanniano positivo que se calculaban con los diagramas de twistores y luego se sumaban a mano eran bloques de construcción que encajaban dentro de esta joya, igual que los triángulos encajan para formar un polígono.


Al igual que los diagramas de twistores, los diagramas de Feynman son otra forma de calcular el volumen del amplituhedro pieza a pieza, pero son mucho menos eficientes. "Son locales y unitarios en el espacio-tiempo, pero no son necesariamente muy convenientes o bien adaptados a la forma de esta joya en sí", dijo Skinner. "Utilizar los diagramas de Feynman es como coger un jarrón Ming y estrellarlo contra el suelo".


Arkani-Hamed y Trnka han podido calcular el volumen del amplituhedro directamente en algunos casos, sin necesidad de utilizar diagramas de torsión para calcular los volúmenes de sus piezas. También han encontrado un "amplituhedro maestro" con un número infinito de facetas, análogo a un círculo en 2D, que tiene un número infinito de lados. Su volumen representa, en teoría, la amplitud total de todos los procesos físicos. En las caras de esta estructura maestra viven amplituhedros de dimensiones inferiores, que corresponden a las interacciones entre un número finito de partículas.


"Son técnicas de cálculo muy potentes, pero también son increíblemente sugerentes", afirma Skinner. "Sugieren que pensar en términos de espacio-tiempo no era la forma correcta de hacerlo".


La búsqueda de la gravedad cuántica


El conflicto aparentemente irreconciliable entre la gravedad y la teoría cuántica de campos entra en crisis en los agujeros negros. Los agujeros negros contienen una enorme cantidad de masa en un espacio extremadamente pequeño, lo que convierte a la gravedad en un actor principal a escala cuántica, donde normalmente puede ser ignorada. Inevitablemente, la localidad o la unitariedad son el origen del conflicto.


Pensamientos desconcertantes


La localidad y la unitariedad son los pilares centrales de la teoría cuántica de campos, pero como muestran los siguientes experimentos mentales, ambos se rompen en ciertas situaciones que implican gravedad. Esto sugiere que la física debería formularse sin ninguno de los dos principios.


La localidad dice que las partículas interactúan en puntos del espacio-tiempo. Pero supongamos que queremos inspeccionar el espacio-tiempo muy de cerca. La exploración de escalas de distancia cada vez más pequeñas requiere energías cada vez más altas, pero a cierta escala, llamada longitud de Planck, la imagen se vuelve borrosa: hay que concentrar tanta energía en una región tan pequeña que la energía colapsa la región en un agujero negro, lo que hace imposible la inspección. "No hay forma de medir las separaciones de espacio y tiempo una vez que son más pequeñas que la longitud de Planck", explica Arkani-Hamed. "Así que imaginamos que el espacio-tiempo es una cosa continua, pero como es imposible hablar con claridad de esa cosa, eso sugiere que no debe ser fundamental: debe ser emergente".


La unitariedad dice que las probabilidades mecánicas cuánticas de todos los posibles resultados de una interacción de partículas deben sumar uno. Para demostrarlo, habría que observar la misma interacción una y otra vez y contar las frecuencias de los diferentes resultados. Hacerlo con una precisión perfecta requeriría un número infinito de observaciones utilizando un aparato de medición infinitamente grande, pero esto último provocaría de nuevo el colapso gravitatorio en un agujero negro. Por tanto, en regiones finitas del universo, la unitariedad sólo puede conocerse de forma aproximada.


"Tenemos indicios de que ambas ideas tienen que desaparecer", dijo Arkani-Hamed. "No pueden ser características fundamentales de la siguiente descripción", como una teoría de la gravedad cuántica.


La teoría de cuerdas, un marco que trata a las partículas como cuerdas vibrantes e invisibles, es un candidato para una teoría de la gravedad cuántica que parece sostenerse en situaciones de agujeros negros, pero su relación con la realidad no está probada, o al menos es confusa. Recientemente se ha descubierto una extraña dualidad entre la teoría de cuerdas y la teoría cuántica de campos, que indica que la primera (que incluye la gravedad) es matemáticamente equivalente a la segunda (que no la incluye) cuando las dos teorías describen el mismo suceso como si tuviera lugar en diferentes números de dimensiones. Nadie sabe muy bien qué hacer con este descubrimiento. Pero la nueva investigación sobre el amplituhedro sugiere que el espacio-tiempo, y por tanto las dimensiones, pueden ser ilusorias de todos modos.


"No podemos confiar en las habituales imágenes espacio-temporales de la mecánica cuántica para describir la física", dijo Arkani-Hamed. "Tenemos que aprender nuevas formas de hablar de ella. Este trabajo es un pequeño paso en esa dirección".


Incluso sin unitariedad ni localidad, la formulación del amplituhedro de la teoría cuántica de campos aún no incorpora la gravedad. Pero los investigadores están trabajando en ello. Dicen que los procesos de dispersión que incluyen partículas gravitatorias pueden ser posibles de describir con el amplituhedro, o con un objeto geométrico similar. "Podría estar estrechamente relacionado pero ser ligeramente diferente y más difícil de encontrar", dijo Skinner.


Los físicos también deben demostrar que la nueva formulación geométrica se aplica a las partículas exactas que se sabe que existen en el universo, en lugar de a la teoría cuántica de campos idealizada que utilizaron para desarrollarla, llamada teoría de Yang-Mills máximamente supersimétrica. Este modelo, que incluye una partícula "superpareja" para cada partícula conocida y trata el espacio-tiempo como plano, "resulta ser el caso de prueba más sencillo para estas nuevas herramientas", dijo Bourjaily. "Se entiende la forma de generalizar estas nuevas herramientas a [otras] teorías".


Más allá de facilitar los cálculos o de abrir el camino a la gravedad cuántica, el descubrimiento del amplituhedro podría provocar un cambio aún más profundo, dijo Arkani-Hamed. Es decir, abandonar el espacio y el tiempo como constituyentes fundamentales de la naturaleza y averiguar cómo surgió el Big Bang y la evolución cosmológica del universo a partir de la geometría pura.


"En cierto sentido, veríamos que el cambio surge de la estructura del objeto", dijo. "Pero no es a partir del cambio del objeto. El objeto es básicamente atemporal".


Aunque se necesita más trabajo, muchos físicos teóricos están prestando mucha atención a las nuevas ideas.


El trabajo es "muy inesperado desde varios puntos de vista", dijo Witten, físico teórico del Instituto de Estudios Avanzados. "El campo aún se está desarrollando muy rápido, y es difícil adivinar qué ocurrirá o cuáles serán las lecciones".


Artículo original (reproducido en Wired con permiso de Quanta Magazine, una división editorial independiente de SimonsFoundation.org cuya misión es mejorar la comprensión pública de la ciencia cubriendo los avances y tendencias de la investigación en matemáticas y ciencias físicas y de la vida.)












 
 
 

Comments


Suscríbete aquí

Gracias por sumitir

  • Facebook
  • Twitter
  • LinkedIn

©2020 by Base10. Proudly created with Wix.com

bottom of page